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Synopsis 

An analysis has been carried out of the two-dimensional elongational flow in an impinging 
channel geometry having either straight or converging wall downstream ducts. Numerical solu- 
tions for Stokes flow were obtained using a nonorthogonal transformation of variables which 
converts the system to a square grid geometry. Calculations show that a strong extensional flow 
exists from the point of channel impingement to a distance downstream approximately D/4 
where D is the channel depth at the impingement point. Extensional gradients and total fluid 
strains also increase when the downstream duct is convergent as opposed to being straight. An 
experimental analysis of the velocity field in the former geometry demonstrates that, under slow 
flow conditions, the kinematics of a Newtonian and a highly non-Newtonian fluid become 
indistinguishable in the downstream region. The latter observation is shown to be consistent with 
second-order fluid theory and the Giesekus-Tanner Theorem. 

INTRODUCTION 

The importance of elongational flow fields in the processing of high-strength 
crystalline polymer fibers and films is well known. Extensional stresses uncoil 
and orient macromolecules, leading to the formation of structures which, upon 
subcooling, crystallize either as shish-kebab fibers (from solution) or core 
crystals with epitaxially grown lamellae (from the melt). Both the magnitude 
of the velocity gradient and the total strain are measures of the potential for 
molecular orientation in such flows. A number of studies have therefore 
focused on the use of controlled extensional flows to analyze orientation 
effects and flow history-morphology-property interactions in crystallizable 
systems. In most cases, converging flow geometries have been employed which 
unfortunately produce nonideal kinematics in the sense that they are 
Lagrangian unsteady. On the other hand, such systems have the important 
feature that flow is continuous, thus allowing direct analysis of the mor- 
phology-property characteristics of the fiber or film extrudate.'>2 

Recently, Cressely and Hocquart have investigated a series of flows of the 
impinging jets type,3 and in one particular case, illustrated what is essentially 
a reverse bifurcation flow geometry consisting of two slanted channels imping- 
ing to form a single downstream channel. Observations of the flow birefrin- 
gence indicated that a highly elongational field exists near the channel 
bifurcation insert. However, to our knowledge, no corresponding analysis or 
kinematic study has been reported. The two-dimensional nature of this flow 
makes it attractive to consider as a processing geometry since experimental 
and numerical analysis (at least for Stokes flows) are more tractable. Further- 
more, since the high stretch rates near the bifurcation tip can be enhanced by 
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Fig. 1. Impinging channel flow geometry with straight wall downstream duct. 

downstream tapering of the flow channel, one has the possibility of increased 
total strains. For these reasons we have carried out an analysis of this 
geometry, a discussion of which is presented in the following sections. We 
begin first with a numerical solution of the Stokes flow problem. 

STOKES FLOW EQUATIONS AND ANALYSIS 

Figures 1 and 2 show the flow geometries which were considered in this 
study. Since, to our knowledge, closed-form analytic solutions are not avail- 
able, a finite-difference numerical scheme was used to analyze the steady 
motion of a Newtonian fluid in Stokes flow in these geometries. Our numerical 
scheme utilizes a modification of a nonorthogonal transformation, originally 
described by Clark and co-worker~,~.~ which shifts the coordinates to a square 
mesh field. In consequence, the irregularity of the geometry is introduced into 
the governing equations. The transformed coordinates a--5 are related to the 
nondimensional X,Y coordinates of the original flow field by the following 
general equations. 

Y -  Yc 
Trunk: a=- 

y u  - yc 

[ = X  (4) 
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Fig. 2. Impinging channel geometry with converging wall downstream duct. 

In these equations, subscripts t', u, ml, m2 identify the lower, upper, mid 
lower, and mid upper boundaries, respectively, and X and Yare the position 
coordinates which have been nondimensionalized with respect to the channel 
depth, D, at the insert point (see Figs. 1 and 2). 

The parameter qo is defined as: 

and defines the location of the insert; for flows with equal upper and lower 
branches this value will be 1/2. 

Figure 3, shows both geometries in the transformated coordinate space 
which serves as the calculation coordinates for the numerical scheme. 

The governing equations for the velocity components v, ( x ,  y) and oy ( x ,  y) 
in the x and y directions are the two-dimensional Stokes equations and the 
continuity equation: 
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Fig. 3. Transformed geometries of Figures 1 and 2. 

Following standard procedures6 these can be written in terms of the stream 
function 3; and the vorticity f to give 

Transformation to 5 - q coordinates gives the following equation set 

0 

a 2 q  a+ a2[  a+ +[...-I-+--- ax2 aY2 a q  ax2 a[ - - 5  (12) 

In these expressions all variables are nondimensional and are defined as: + = $ / v ,  { = D 2 f / v ,  X = x / D  and Y = y / D  where v is the kinematic viscos- 
ity. In order to write the governing equations in terms of 6 and q,  the 

for each section. The final equations for the straight downstream channel (Fig. 
derivatives &$/ax, a q / a X ,  aq /aY ,  a 2 q / a X 2 ,  a2q/i3Y2 must be evaluated 
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1) become the following: 

Trunk: 

a2+ a2+ - + - -  - - s  at2  aV2 
Lower branch: 

Upper branch: 

(13) 

(14) 

For the converging downstream channel (Fig. 2) the equations for the trunk 
become 

Btan(a)Y - tana - 2tanytana 

(1 - 2( t  - l)tana)2 

2tan(a)Y-tana-2tanytana 1 

(1 - 2(5 - l)tana)2 

[2tan(a)Y - tana - 

[I - 2 ( t  - 1)tanal3 (19) 
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The upper and lower branch equations are identical to those of the straight 
channel geometry. 

The flow field is prescribed by the wall boundary conditions on \cI and 5 and 
by the inlet and outlet conditions. The stream function boundary conditions 
are: 

\ c I = O  at q = O  

\cI = volumetric flowrate (Q) at  q = 1 

For the vort-ity at  the wall the following approximation can ,e used,6 the 
suitability of which was evaluated in straight channel flow calculations. 

Here w signifies the p i t i o n  on the wall. However, for the sharp corner of the 
insert this expression is not adequate hence there we assume { = 0. 

The inlet and outlet are considered to be far enough from the insert tip to 
be free of any nonuniform flow effects and both conditions are prescribed to be 
parabolic profiles. Thus for the lower branch 

5 =  -~G[(I ,  + ( t a n y ) t ) c o s y  - (sin7 - - 4 1 (25) 

1 

while for the upper branch, the following hold: 

cos3y 
( q  + 2 t a n y  - ( t a n y ) ( ) c o s y  + tsiny - ~ 

4 

- Lsiny - - 
2 

cos y sin2y - 
4 

- cos y 4 sin2y - 2siny - =)3/3coey] 2 

where c and G are determined based on the volumetric flow rate. 
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The outlet conditions for the converging downstream channel and straight 
channels differ. Assuming Hamel flow for the converging channel one obtains 
the following 

Y -  1.5 
s =  2Gsin(2 tan-1( 3.5137 - X)) 

(3.5137 - X)' + ( Y -  1.5)' (29) 

"I - "-- 3.5137 - X 1 I * (  Y -  1.5 

For the straight channel downstream one instead has 

(11 + tany - 1.5)3 
+ = G [  

where G and c are constants which depend on the flow rate. 
Since we have a square mesh for the numerical computation field, central 

difference forms of the vorticity and stream function equations were employed 
using a mesh size equal to 1/40 of the characteristic length D. For the 
vorticity equations, implicit solutions of the finite difference forms were 
carried out using the steady Liebman method.6 Solution of the stream 
function equations required an under relaxation method using relaxation 
parameters which decreased with the interation number to avoid instabilities. 
The convergence criterion was the following: 

where k is the iteration number. 

NUMERICAL RESULTS AND DISCUSSION 

The streamline pattern for flow in a channel configuration corresponding to 
a 45O bifurcation insert and a straight wall downstream duct is shown in 
Figure 4. The effect of a converging downstream flow with a channel conver- 
gence angle of y/4 (i.e., 11.25O) is shown in Figure 5. The velocity gradient 
tensor [(vv)*lij = auJax, for either system can be written as 
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Fig. 4. Calculated streamline pattern for straight wall geometry with 45O channel insert. 

4 

Fig. 5. Calculated streamline pattern for converging wall geometry with a = 11.25O. 

In most cases the kinematics were nearly planar elongational, in that the 
off-diagonal terms were negligible compared to the diagonal components. 
Comparisons of the elongation rate, iluJilx, for the two geometries are shown 
in Figures 6 and 7 as functions of channel position downstream from the insert 
tip for a gap width of 1 cm. One sees that the extension rate is clearly 
enhanced by the tapered channel. The effects of branch angle, y, and conver- 
gence angle, a on the centerline extensional gradient are illustrated in Figure 
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Fig. 6. Centerline extensional gradient as a function of distance downstream for converging 

(0 )  and straight wall (0) geometries. 

- 

8. Comparing Figure 6 with the solid line of Figure 8 one sees that, as 
expected, at a fixed convergence angle, the initial extension rate increases with 
increased branch angle. However, once the downstream converging flow be- 
comes fully developed, the resulting gradient depends only upon the conver- 
gence angle. Since from Eq. (34), strain rate also varies as 1/D2, then for a 
given outlet gap and overall pressure drop, a particular combination of D and 
a should lead to an optimal strain rate. 
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Fig. 8. Effect of convergence angle, a! = 15O (0) and 11.25O (0) on centerline extensional 

gradient for 70° branch angle, y. 

The effect of stream impingement dissipates about 0.75 D downstream from 
the insert as can also be seen in Figures 6 and 7. Thus, the impinging channels 
give rise to a high extension rate near the bifurFtion point, while the 
converging flow leads to extension rates which are highest near the exit. In 
consequence, the total extensional strain along the symmetry axis of the 
converging channel section is effectively increased by the upstream geometry. 
Estimating the strain by the product of residence time with twice the 
extension rate, one finds an increase over the case of simple converging flow by 
a factor of about 1.7. 

EXPERIMENTAL OBSERVATIONS 

To further evaluate the nature of the extensional flow in this geometry, a 
series of experiments was carried out using the channel design shown in Figure 
9. Streak photography was used to obtain the flow kinematics in the down- 

FLOW DIRECT ION - 

Fig. 9. Sketch of experimental test section with dimensions. 
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stream section for two fluids, one a Newtonian %% glycerin-water mixture, 
the other a highly non-Newtonian solution of 1 wt% polyacrylamide (Separan 
AP-30) in a 50% glycerinewater mixture. The flow loop, optical system, and 
data analysis methods were the same as those described in detail elsewhere.' 
Viscosity and normal stres data for the polymer solution were obtained using 
a Rheometrics System 4 with a cone and plate assembly. The flow curve is 
shown in Figure 10. 

Figures 11 to 13 show representative plots of the measured velocity profiles 
a t  various axial positions downstream from the insert tip. The solid lines are 
based on numerical calculations and the broken lines are calculations based on 
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Fig. 11. Measured velocity profile at x = 0.25 D for Newtonian (0) and polyacrylamide (0) 

systems --- numerically calculated profile; -profile corresponding to power law flow (lubrication 
approximation). 
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Fig. 12. Measured and calculated velocity profiles at x = 0.50 D. Same symbols as Fig. 
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Fig. 12. Measured and calculated velocity profiles at x = 0.50 D. Same symbols as Fig. 11. 
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Fig. 13. Measured and calculated velocity profiles at x = 0.75 D. Same symbols as Fig. 11. 

the lubrication assumption for power law flow in the tapered section using a 
power law index n = 0.38 which results from Figure 10. In all cases the 
velocities have been nondimensionalized with respect to the average velocity 
at the points in question and distances have been normalized with respect to 
the channel depth, D. The pattern displayed by these data is similar to an 
earlier observation' in that, to within experimental error, the profiles of the 
two fluids are essentially indistinguishable and both agree well with the 
Newtonian calculation. In the latter case, Mackay and McHugh used a 
two-dimensional convergingplates geometry and flow past a slender body to 
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investigate the nature of the enhancements in extension rates which occur 
near the body tip. Their velocity field data showed that in regions im- 
mediately downstream from the seed symmetry axis, the kinematics for 
Newtonian and non-Newtonian systems were essentially indistinguishable, 
though in the macroscopic field they differed significantly. Using the flow 
classification method suggested by Tanner' for motions with constant stretch 
history, they concluded that the local flow was strong and that under such 
conditions the kinematics of different fluids become similar. In the present 
case we believe the similarity of our macroscopic profiles may simply be a 
reflection of slow flow behavior which can be rationalized by means of the 
Giesekus-Tanner Theorem? Following standard arguments'o one can show 
that in slowly varying flows, the general viscoelastic constitutive equation 
from simple fluid theory becomes equivalent to a perturbation series about 
Newtonian behavior, the first two terms of which give the well-known 
second-order fluid constitutive equation for the extra stress, T, as 

In these expressions, 7,  is the Newtonian viscosity, \k, and \k2 are the 
(constant) first and second normal stress coefficients and the A(i) are the first 
and second Rivlin-Ericksen tensors given, respectively, by the deformation 
rate (A(")) and the convected Oldroyd derivative of the deformation rate ( A(2)). 
Inspection of the rheological data in Figure 10 shows that the variation in 
viscosity is less than 5% between 4 X s-l and 8 x lop2 s-l, which 
corresponds to the shear rates in our geometry near the center line (i.e., from 
the center line to about half the distance to either wall). Likewise, \k, changes 
less than about 7% in this range. Thus, one could argue that the fluid behavior 
is essentially that of the second-order model under these conditions. 
The Giesekus-Tanner theorem states that for any plane creeping flow, the 
Newtonian velocity field, for given boundary conditions will also be a solution 
for the second-order fluid flow. Hence, one would expect to see a behavior 
pattern essentially as shown in Figures 11-13. 

The second-order fluid assumption further enables computation of normal 
stresses for our flow from the following expressions9 

where #I2 = - \k1/2 and p,, = \k2. The usual shorthand notation has also been 
used to write the partial derivatives of J /  as subscripts. In order to evaluate 
the stress terms, differentiation of the numerically generated stream functions 
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Fig. 14. First normal stress difference (0) calculated from Eqs. (36) and (37) for the geometry 
of Fig. 9 compared to calculations of Ref. 11 (0) for a simple converging channel. 

is necessary which, together with the small magnitude of F(0 + 0.2) greatly 
reduces the accuracy of the computations. Furthermore, very small values of 
the derivatives are multiplied by orders-of-magnitude larger coefficients (i.e., 
to, &, in these equations, hence introducing large uncertainty in the 
calculation. For distances smaller than D/4 from the bifurcation insert, 
gradient changes grow rapidly, hence higher order terms would be needed in 
the stress equations and the Giesekus-Tanner theorem would no longer apply. 
Thus, with these limitations in mind, the normal stresses T~~ and T,,,, were 
computed for the region a distance D/4 downstream from the insert to the 
channel exit and are shown in Figure 14 as a first normal stress difference. 
These calculations can be compared with those given by Han and Drexler" 
for flow into a converging channel. For our system the effect of the impinging 
stream entrance flow dissipates at distances on the order of 0.75 D from the 
insert and one sees a pattern similar to theirs in that normal stress effects 
become dominated by the converging channel kinematics. On the other hand, 
up to that point, flow wil l  be dominated by the strong extensional kinematics 
generated by the impinging streams, thus normal forces become much larger. 

Future studies wil l  address stress measurements using flow birefringence 
with crystallizable systems to determine whether and how much oriented 
structure formation can be affected in such a geometry. For the present, 
however, we feel that the potential of this geometry for extensional flow 
studies has been demonstrated. 
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ELONGATIONAL FLOW IN 2-D CHANNEL GEOMETRY 1509 

References 
1. D. H. Crater and J. A. Cuculo, J. Polym. Sci. Phys. Ed., 21, 2219 (1983). 
2. S. L. Sakellaridea and A. J. McHugh, Pol.. Eng. Sci., 26, 1179 (1985). 
3. R. Cressely and R. Hocquart, OptiCa Actu, 27,699 (19sO). 
4. M. E. Clark, J. M. Robertson, and L. C. Cheng, Proc. Symp. Computer Methods in 

Engineering, Vol 1, UNv. Southern Calif., Aug. 1977, p. 497. 
5. L. C. Cheng, M. E. Clark, J. M. Robertson, and N. H. Chao, in First MidAtlantic 

Conference on Bio-Fluid Mechanics, Ed. D. J. Schneck, Virg. Poly. Tech. Inst., Blacksburg, VA, 
1978, p. 151. 

6. P. J. Roache, Compututimd Fluid Dynumics, Hermasa, Albuquerque, 1972. 
7. M. E. Mackay and A. J. McHugh, J. Rheol., 29, 655 (1985). 
8. R. I. Tanner, AZChE J., 22, 910 (1976). 
9. R. I. Tanner, Phys. Fluids, 9, 1246 (1968); H. Giesekus, Rheol. Actu, 3, 59 (1963). 
10. R. B. Bud, R. C. Armstrong, and 0. Hassager, Dynamics of Polymeric Liquids, vol 1, 

11. C. D. Han and L. R. Drexler, J. Appl. P o l . .  Sci., 17, 2369 (1973). 
Wiley, New York (1977). 

Received May 22, 1986 
Accepted September 4, 1986 




